237 research outputs found

    Gated Diffusion-controlled Reactions

    Get PDF
    The binding and active sites of proteins are often dynamically occluded by motion of the nearby polypeptide. A variety of theoretical and computational methods have been developed to predict rates of ligand binding and reactivity in such cases. Two general approaches exist, "protein centric" approaches that explicitly treat only the protein target, and more detailed dynamical simulation approaches in which target and ligand are both treated explicitly. This mini-review describes recent work in this area and some of the biological implications

    Molecular dynamics simulations and drug discovery

    Get PDF
    This review discusses the many roles atomistic computer simulations of macromolecular (for example, protein) receptors and their associated small-molecule ligands can play in drug discovery, including the identification of cryptic or allosteric binding sites, the enhancement of traditional virtual-screening methodologies, and the direct prediction of small-molecule binding energies. The limitations of current simulation methodologies, including the high computational costs and approximations of molecular forces required, are also discussed. With constant improvements in both computer power and algorithm design, the future of computer-aided drug design is promising; molecular dynamics simulations are likely to play an increasingly important role

    Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics

    Get PDF
    Periplasmic binding proteins (PBPs) are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE) experiments have shown that the maltose binding protein (MBP) - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime) mixture comprising an open state (approx 95%), and a minor partially closed state (approx 5%). Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175–184) is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins

    Continuum Molecular Simulation of Large Conformational Changes during Ion–Channel Gating

    Get PDF
    A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule (protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as alternative to Langevin and Smoluchowski equations and used to simulate gating conformational changes of the Kv7.1 ion-channel over the time scale of its gating process (tens of milliseconds). The alternative equations predict the statistical properties of the motion trajectories with good accuracy and do not require the force field to be constant over the diffusion length, as assumed in Langevin equation. The open probability of the ion–channel was determined considering cooperativity of four subunits and solving their concerted transition to the open state analytically. The simulated open probabilities for a series of voltage clamp tests produced current traces that were similar to experimentally recorded currents

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Specificity quantification of biomolecular recognition and its implication for drug discovery

    Get PDF
    Highly efficient and specific biomolecular recognition requires both affinity and specificity. Previous quantitative descriptions of biomolecular recognition were mostly driven by improving the affinity prediction, but lack of quantification of specificity. We developed a novel method SPA (SPecificity and Affinity) based on our funneled energy landscape theory. The strategy is to simultaneously optimize the quantified specificity of the “native” protein-ligand complex discriminating against “non-native” binding modes and the affinity prediction. The benchmark testing of SPA shows the best performance against 16 other popular scoring functions in industry and academia on both prediction of binding affinity and “native” binding pose. For the target COX-2 of nonsteroidal anti-inflammatory drugs, SPA successfully discriminates the drugs from the diversity set, and the selective drugs from non-selective drugs. The remarkable performance demonstrates that SPA has significant potential applications in identifying lead compounds for drug discovery

    Endothelial Membrane Remodeling Is Obligate for Anti-Angiogenic Radiosensitization during Tumor Radiosurgery

    Get PDF
    While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either "normalize" dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study.Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase), regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C(16)-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase(+/+) mice or asmase(-/-) littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase(-/-) mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect.These studies show that angiogenic factors fail to suppress apoptosis if ceramide remains elevated while anti-angiogenic therapies fail without ceramide elevation, defining a ceramide rheostat that determines outcome of single dose radiotherapy. Understanding the temporal sequencing of anti-angiogenic drugs and radiation enables optimized radiosensitization and design of innovative radiosurgery clinical trials

    Allostery in Its Many Disguises: From Theory to Applications.

    Get PDF
    Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts

    Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains

    Get PDF
    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20–100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient β-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events

    Detection of Functional Modes in Protein Dynamics

    Get PDF
    Proteins frequently accomplish their biological function by collective atomic motions. Yet the identification of collective motions related to a specific protein function from, e.g., a molecular dynamics trajectory is often non-trivial. Here, we propose a novel technique termed “functional mode analysis” that aims to detect the collective motion that is directly related to a particular protein function. Based on an ensemble of structures, together with an arbitrary “functional quantity” that quantifies the functional state of the protein, the technique detects the collective motion that is maximally correlated to the functional quantity. The functional quantity could, e.g., correspond to a geometric, electrostatic, or chemical observable, or any other variable that is relevant to the function of the protein. In addition, the motion that displays the largest likelihood to induce a substantial change in the functional quantity is estimated from the given protein ensemble. Two different correlation measures are applied: first, the Pearson correlation coefficient that measures linear correlation only; and second, the mutual information that can assess any kind of interdependence. Detecting the maximally correlated motion allows one to derive a model for the functional state in terms of a single collective coordinate. The new approach is illustrated using a number of biomolecules, including a polyalanine-helix, T4 lysozyme, Trp-cage, and leucine-binding protein
    corecore